Averaged mappings in the Hilbert ball

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Julia–Carathéodory theorem for hyperbolically monotone mappings in the Hilbert ball

We establish a Julia–Carathéodory theorem and a boundary Schwarz– Wolff lemma for hyperbolically monotone mappings in the open unit ball of a complex Hilbert space. Let B be the open unit ball of a complex Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖, and let ρ : B ×B 7→ R be the hyperbolic metric on B ([8], p. 98), i.e., ρ(x, y) = tanh √ 1− σ(x, y), (1) where σ(x, y) = (1 − ‖x‖)(1 ...

متن کامل

A Hybrid Gradient-Projection Algorithm for Averaged Mappings in Hilbert Spaces

It is well known that the gradient-projection algorithm GPA is very useful in solving constrained convex minimization problems. In this paper, we combine a general iterative method with the gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that the sequence generated by the hybrid gradient-projection algorithm converges in norm to a minimizer of constrain...

متن کامل

Hyperbolic Monotonicity in the Hilbert Ball

We first characterize ρ-monotone mappings on the Hilbert ball by using their resolvents and then study the asymptotic behavior of compositions and convex combinations of these resolvents. 2000 Mathematics Subject Classification: 32F45, 34G20, 46G20, 46T25, 47H05, 47H09, 47H10, 47H20.

متن کامل

Averaged Mappings and the Gradient-Projection Algorithm

It is well known that the gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this article, we first provide an alternative averaged mapping approach to the GPA. This approach is operator-oriented in nature. Since, in general, in infinite-dimensional Hilbert spaces, GPA has only weak convergence, we provide two modifications of GPA...

متن کامل

Parabolic starlike mappings of the unit ball $B^n$

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1985

ISSN: 0022-247X

DOI: 10.1016/0022-247x(85)90187-8